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Abstract—A model of linear viscoelasticity, applicable to the description of structural materials
whose creep is asymptotically logarithmic. is derived on the basis of some substantial modifications
of a model introduced by Kuhn er al. (1947, Helr. Chim. Acta 30, 307-328, 464-486) to describe
rubber. From the proposed creep function. the relaxation function is determined by Laplace
transform inversion. Energy dissipation is studied. and in particular the frequency dependence of
the loss tangent, which is found to be flat over a large number of cycles if the damping is small, in
accordance with observed behavior of structural materials and unlike the usual (Kelvin) model of
structural damping. An approximation to the modified model based on a discrete retardation-time
spectrum, called the discrete modified Kuhn model, is also studied; this is an internal-variable
model which can be extended to account for nonlinear behavior. In contrast to existing rheological
models, in the proposed model the number of parameters is fixed and does not depend on the
number of rheological elements needed to simulate experimental results.

I. INTRODUCTION
Beginning with the experiments by Phillips (19085). the creep of numcrous solids (including
rubber, glass, various metals and concrete) hias been observed to obey a logarithmic creep
law over a wide range of times ; that s, at a time ¢ sufficiently long after the application of
stress, the strain is given approximately by
goc Iy, (N
For concrete in the lincar range, for example, the creep function
J(1) = A+ Blog (1 +1/1), )
is often used (U.S. Burcau of Reclumation, 1956) to describe creep over a time range of
months or years if t is a characteristic time of the order of one day. Obviously, eqn (2)

reduces to the form (1) for ¢ sufliciently large.
Following Phillips, the creep of rubber was traditionally described by the creep function

J()=A+BInt 3)

and its time derivative
B
J() = - @)

In order to remedy the singularity at ¢ = 0, Kuhn er al. (1947) proposed to replace the
expression (4) for the time derivative of the crecp function with

J(1) = —l;(l —e~ M, (5)

which has the finite limit BC as ¢t — 0 and has the same behavior as (4) as ¢ » |/C. Kuhn
et al. defined the creep function as the integral of (S) from 0 to ¢, with no constant of
integration, consistent with the fact that the instantancous deformation of rubber, based
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on “glassy” response [i.e. for temperatures below the glass-transition temperature T,: see
e.g. DiBenedetto (1967) or Van Vlack (1989)]. is negligible when compared with later
deformation (based on “‘rubbery” response. i.e. for temperatures above T,). This creep
function can be expressed in terms of the exponential integral [see e.g. Greenberg (1978)]
as follows:

-Cx

J(t) = Bf Lo 4 = Bl +In(C+Ei (Cn). (6)
0

X

where Ei represents the exponential integral and y = 0.5772. .. is Euler’s constant. It is seen
from this expression that J(0) = 0 and that the logarithmic feature of the observed creep
function (3) is preserved.

It is the purpose of the present paper to propose several modifications to the Kuhn
creep function (6) that will make it more readily applicable to solids such as concrete (in
which the instantaneous strain is not negligible beside the creep strain) and generalizable
to multiaxial stress states and to nonlinear behavior.

2. THE CONTINUOUS MODIFIED KUHN MODEL

2.1. Creep function

The first modification, at first glance minor but in fact significant in that it makes
possible the description of structural materials, is the inclusion of a nonzero constant of
integration in the expression for the creep function in order to account for instantancous
clasticity. The creep function is therefore

'

|
J(’) = A+Bj- s-v“ - d_\“ (7)

where A is the instantancous clastic compliance.

The second modilication involves a change of variable, namely Cx = t/7, where 7 is
the new dummy variable, in order to obtain a rheological representation of the model. The
creep function can then be written in the following retardation-time superposition form :

“ . dr
J(l)=A+BJ. (1—e ") —. &)
\ec T

This creep function given by (7) or (8) will be said to represent the continuous modified
Kuhn model, since it is based on a continuous retardation-time spectrum, in order to
distinguish it from the discrete modified Kuhn model to be discussed in Section 4.

2.2, Relaxation function
The relaxation function G(¢) corresponding to the creep function (8) may be determined
by mcans of Laplace transform mcthods. It is well known [sce e.g. Christensen (1982) or

Fligge (1975)] that the Laplace transforms of the creep and relaxation functions, written

respectively as J(s) «f 2{J)} and G(s) = 2Z{G()} (where s is the transform variable, in

general complex), are related by

J(5)G(s) = 1 )

A

9

The relaxation function may therefore be found by inverting G(s) as given by (9). Using
the creep function in the form given by eqn (7), we have
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- A ! "1 —e ~-Ce i
J(S) = -+ B e dr o 7Y d[.
5 0 0 T

or
- A t p -
J(s) = — +B!!’{J j-(r)dr} =" 4 3/@ 0
$ )} s 5
where
. def I —e;(vl
fin= —
so that
T =211} = :/{q—(,i’}.
where
g(n)=1—c ",

From the propertics of the Laplace transform it follows that

S = f gy du,

while

s CHy

- ' 1 s+C
S{s) = J (u - “+(,> du=In .

As a result of eqn (10), the Laplace transform of the creep function is

Jis) = 1[A+B|n<|+€)]. (ry)

and by relation (9) the Laplace transform of the relaxation function is found to be

‘ . l |
g(s) = J (I=¢c “Ye “du= -
u

Therefore

Gs)= -~ -....~I.- S

Jrem(i29)]

It follows from the Laplace transform inversion thecorem that the relaxation function G(¢)
is given by the Bromwich integral

-

G(t)=2""GW] = _,:{lj‘ G(s)c™ds,

where x denotes an abscissa located to the right of any singularity G(s) may have. Hence,
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Fig. L. Singularitics of G(s).
l PR ctl
G = 7m.J‘ | e (12)

L P O)

The integrand must be examined in order to determine its singularitics, and in particular
poles and branch cuts. The singularity at s = 0 is removable. On the other hand, the one
ats =5, where A+ BlIn (1 +C/s,) = 0, is a pole. We may solve for s, obtaining

C
S = —l—_—ém (l3)

Finally, there is a logarithmic branch cut on the negative real axis from — C to 0, since for
s in the interval [— C,0], 1 +C/s < 0. It is observed from eqn (13) that s, < —C. Hence
the description in the complex plane is the one portrayed in Fig. 1. With the aid of Cauchy’s
integral theorem, the refaxation function G(¢) given by eqn (12) becomes

) l
G(1) = Res (" G(s). s0) + 5= (I +12), (14)

where Res (" G(5). 54) is the residue of the function e* G(s) associated with the pole s = s,
and /, and 7, are the integrals above and below the branch cut, respectively. Using the
standard method in complex analysis [see e.g. Marsden and Hoffman (1987)], we found
the residue to be
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—Ct{l_e A8
eCt,(Ic )

Res (C’" G.So) = — m

(15)

In order to evaluate the integrals [, and /.. we note that above the branch cut s = r e™,

where 0 < r < C, so that
ln(l+ S) = In <€—1>+in,
5 r

while below the branch cut s = re~", and hence

(1) w()e

With the help of these expressions, we obtain

C —rt

1 €
(1) = Im L r[A+BIn(C/r—1)—iBn] dr.

where Im denotes the imaginary part of a complex quantity. By performing the change of
variables x = r/C, and upon noting that 0 < r < C implies 0 < x < |, we may transform
this intcgral into

1 c e

1
a1+ 1) =8 J A+ Bla (Ux = D)) 4 (B2} 9%

Inserting this result, along with egn (15). into (14), we obtain the relaxation function in a
form in which it may be evaluated by numerical integration, namely

¢ Crl e tH H ¢ V't
Gi) = — -~ +B J dx.
t

Bt 1) , X{[A+BIn(l/x=D))* +(Bn)?}

While the integrand blows up at x = 0, it can be shown that the integral is well behaved
there. For sufficiently small x, the denominator is approximately Bx[In(1/x)]? so that it
is sufficient to examine the behavior of the integral

J" dx _ J"' dx
o X[In(1/0)]°  Jo x(Inx)*

for some small # (h « 1). By introducing the variable 1 = In x, this integral becomes

4 du _ _l )
e In(Uky;

3, ENERGY DISSIPATION

3.1. Thermodynamic considerations

Energy dissipation in a lincarly viscoelastic material may be discussed on the basis of
the thermodynamics of materials with internal variables. In this section special attention
will be paid to the description of the dissipation by the proposed model, in particular its
relation with the frequency of excitation. By way of background it is recalled that if an
oscillatory strain of angular frequency w,
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e(t) = g, sin wt, (16)

is applied to a linear viscoelastic material specimen, the steady-state stress response o is
also oscillatory with the same angular frequency w. but out of phase with the strain. In
particular, the stress leads the strain by a phase angle d(w) and is given by

a(t) = aysin (Wi +5(w)). (17

For simplicity. the explicit dependence of the angle § on w will henceforth be omitted. The
dissipated energy. as will be seen. is associated with the phase angle 0. If wr is eliminated
between eqns (16)-(17). the following refation is obtained :

N

o> (1) et cosd . ..
(, ) + ( ) -2o(t)e(t) —— = sin" J.
Gy L E00q

This equation describes an ellipse in the o-¢ plane.
The dissipated energy may be calculated by appealing to the first and second laws of
thermodynamics. The local form of this law is

pii = o i+ pr—divh, (18)

[sce e.g. Lubliner (1990)]. where u is the internal encrgy density, p is the material density,
r is the rate of body heating or radiation per unit mass, and h is the heat-flux vector (so
that 4 = h-nis the heat outflow per unit time per unit surface with normal vector n). The
inner product of the stress with the strain rate tensor represents the mechanical power (also
called deformation power or stress power) per unit volume,

Let a cyelic process in a material element be defined as a process in which the kinematic
and response functions defining the state of the clement have the same values at the
beginning (lime ¢,) and at the end of the process (time ¢,). Upon integrating eqn (18) from
1, to 1., it is scen that

J.a:éd1+<[.(pr-div h)dr =0,

since the internal-energy density is a state function and thercfore has the same value at
instants at which the state is the same. Since the steady-state excitation is a cyclic process,
it follows that the integral of the deformation power over a period (cqual to the area inside
the stress—strain loop in the one-dimensional case) equals the amount of heat produced (or
the mechanical energy dissipated) during this time. It is clear from the above derivation
that the arca of the stress—strain loop represents the dissipated encrgy only in the case of a
steady-state deformation and for a period. It can be mentioned here that Tschoegl (1989)
arrives at the same result on the basis of the assumption that the kinetic encrgy can be
neglected for a viscoelastic material ; this assumption is unnecessary, and is wrong in general.
The second law of thermodynamics may be expressed by the Kelvin inequality

D=3 pi 20,

(Lubliner, 1990). where D is the intrinsic dissipation (Lemaitre and Chaboche, 1990),

is the “thermodynamic force™ conjugate to the internal variable ¢,, and  is the Helmholtz
free-energy density per unit mass. It was shown by Lubliner (1972) that the additive
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decomposition of the strain tensor ¢ into elastic (¢°) and inelastic parts (¢') is compatible
with the existence of a free energy density y(e, &, T) if and only if the free energy can be
decomposed as follows:

Y. T.5) =y (e-e@). D+y'(¢E.T). (19)

Then the dissipation becomes

. oy’
D=a:s"——pzalf ¢,

with the help of the standard relation ¢ = p dy//Cs [see e.g. Lubliner (1990)].
If the part of the dissipation made up of the inelastic work rate o:é' is integrated
through a cyclic process, we obtain

f N 1
J a:é’dr=f a:édt—J. o:£°de.
0 " 1y

Because of the relation (19), the stress tensor is given by

e
T=O e
Hence the sccond integral of the right-hand side equals the difference of the values of
Y° (which is a function of e° and T') at the beginning and at the end of the cycle and is zero
for isothermal conditions [e° attains the sume values at the beginning and end of the cycle
for isothermal conditions, since o docs so and & = £°(a, T)]. Since &(o, T, &) and ¢ attain
the sume values at the end of the cycle and because specifically a steady-state cycle is being
considered, it is reasonable to assume that in such a cycle the internal-variable vector & also
has the saume value at the end of the cycle. Hence the integral over a cycle of the second
part of the dissipation D = —p Z,(0y¢'/0¢,)&, equals zero in an isothermal process, in view

of eqn (19). Hence
;Vd=f'od:=f'a:ed:.

Consequently, we have arrived at the same result as before, i.e. the dissipated energy
is given by the arcu of the stress-strain loop in a steady-state cycle. It is interesting to note
that the result based on the second law of thermodynamics is the same as the one based on
the first law, but with the additional assumption of isothermal processes.

Upon combining the above results with the relations (16) and (17) and integrating
over a period, we obtain the dissipated energy per unit volume in a cycle,

W, = J-o- de = J dy sin (wt + d)ew cos wr dr,
0

and upon performing the integration,
Wy = g4&om sin 4. (20)

Hence the tangent of the phase angle 6, known as the loss tangent. is
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W,
NG uE,COS O

tan o =

The strain attains its maximum value g, at t = 7'4, and the corresponding value of the
stress is o = 6, cos J. If IV, denotes the stored energy per unit volume of a linear elastic
material strained up to g, with corresponding stress ¢ = g, cos d. then W is

W, = 120,86, cos .

so that

tand = -——. 2

3.2. Comparison with Kelvin model

The analysis presented above may be compared with that used frequently in structural
dynamics. Assume that a body or an element is subjected to a displacement-controlled
sinusoidal excitation given by A = A, sin wr. The resulting steady-state force is

F=F,sin(wt+9).

As a rule the Kelvin model is used in structural dynamics, though without being explicitly
referred to: it is commonly known by other names, such as “viscous model™ or “standard
structural model™, and it is sometimes thought, confusingly, that all lincar damping models
are Kelvin models. With the Kelvin model, the foree displacement relationis F = KA+ HA,
where K and /1 are the stiffness and viscous cocllicient, respectively, of the element under
consideration. By comparing the two expressions for the foree, we have the result that
cos d = KAy/F, and sin § = HwA,/F,. Henee the loss tangent is

. IIU)
tnd = P (22)

With the help of this expression, the force becomes
K .
F=FA+ = tan §A.
w

With the preceding expression for sin é and with eqn (20), the following expression is
obtained for the energy dissipated in a complete cycle by the clement under consideration :

W, = nHwA;. (23)

If the element comprises a single-degree-of-freedom system with mass M and natural
frequency wg, = \/I\’/M. then the dumping cocflicientis § = H/H., = H{2Mw, = Hwy/2K;
hence the viscous coeflicient is # = 2Mw ¢ = (2K/w,)E. Comparing this expression for the
onc previously found for the viscous coeflicient, #1 = tan dK/e, yields the result

tan o m,
G = —p ooy
2w

so that at resonance (o = ,) the damping cocthicient cquals one-half of the loss tangent.
With the help of eqn (21) it is also found that
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at resonance. From eqn (23) we observe that the dissipated energy as predicted by the
Kelvin model is quadratic in the displacement and linear in the frequency, while from eqn
(22) we note that the loss tangent is linear in the frequency. This predicted behavior is
contrary to that observed in most structural materials (Nashif er al., 1985; Kelly. 1991).
in which the damping coefficient is essentially independent of frequency. This frequency
independence is usually modeled by hysteretic damping (Kelly, 1991 ; Nashif et al., 1985),
which although convenient-in frequency-domain analysis is intractable in time-domain
analysis. The latter is often preferable because nonlinearities can then be taken into account.

3.3. Frequency representation

A mathematically powerful way of presenting the loss tangent is by means of the
frequency representation which will be used here (Golden and Graham, 1988). Let { denote
the function

$(0) = JOYSS(O) + J()H(1). (24)

where H(¢) is the Heaviside step function and d(¢) is the Dirac delta function. The strain
may then be represented (Golden and Graham, 1988) as

u(1) = j {—)a()dr, (25)

where the lower limit may be replaced by ¢ if e(r) = 0 for £ < ¢. Similarly, we may define

(1) = GO)3(1) + G(1) H (1),

so that

a(l) = J p(r—1)e(r)dre. (26)

Let {(w) denote the Fourier transform of {(1), i.c.

del’

:((1)) = j ;(,)c--mu It 7 {‘:}‘
0

with similar definitions for ji(w), 6(w) and é&(w). [t can casily be shown that
l(w) = ioJ(iw), fi(w) = iwG(iv),

where J and G denote the Laplace transforms as before. By taking the Fourier transforms
of cqns (25) and (26) we obtain

i) = E(w)d(w), d(w) = fi(w)i(w),

so that

The complex functions fi(w) and C(w) are respectively known as the complex modulus and
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JO/A

11 B =.01

-2 -1 0 1 2 3 4 5 6 7

log (CY)

Fig. 2. Continuous modified Kuhn model: creep function for various values of §,

complex compliance. If ji(w) = fi () +ifi{w), where pu(w) and g2(w) are usually referred
to as the storage modulus and the loss modulus, respectively, then the loss tangent is

. ;2»((’}})
tan o = oo,
#y(w)
Similarly, if {() = {(w)—il:(w), then
tan § = {E’(w—) 27
Ci(w)

For the continuous modificd Kuhn model it follows from eqn (11) that

. c Jot C
w) = A+Blﬂ(l + :') = A+Bln\/l+ s —iBtan~! <>
174 w” w

The loss tangent of the continuous modified Kuhn model is therefore

i
Blan~t -
tan § = q (28)

| 2t
1+/31n(1+ )
q

where § = B/A and ¢ = w/C. Plots of the creep function J{1), as given by eqn (7). against
the logarithm of time and of the loss tangent, given by eqn (28), against the logarithm of
¢ are shown in Figs 2 and 3. respectively. It is observed from the latter plot that for small
values of f3, the loss tangent is almost constant over a wide frequency range, which is a
characteristic of structural materials, and the values are similar to those observed in
structural materials. The Kelvin model notoriously fails to predict this type of behavior,
since its loss tangent varies linearly with the frequency.
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Fig. 3. Continuous modiftied Kuhn model : frequency dependence of loss tangent for various values
of .

4. THE DISCRETE MODIFIED KUHN MODEL

4.1. Relation to continuous model
Let Jy (1) denote the following truncated Dirichlet (or Prony) serics

N
Jyty =A+BInr Y (I=c ), (29)

m-{

where rois a parameter subject to r > 1. This series represents the creep function of a
generalized Kelvin model, shown in Fig. 4, consisting of a spring with compliance A4 in
series with N+ | Kelvin clements, each of which has the same spring compliance B In r, and
whose retardation times form a discrete spectrum with values #"/C, m=0,...,N. It will
be shown that J,(¢) has as a limit, under conditions that will be specified, the creep function
J(1) of the continuous modificd Kuhn model. Consequently the model described by J, (1)
may be called the discrete modified Kulin model. 1t is noteworthy that the only parameters
describing the model are A, B, r and N, so that the number of parameters is independent
of N.

E,=1/Blnr fm =r"/BClnr

.
.

1/A

Fig. 4. Discrete modified Kuhn model: representation as a gencralized Kelvin model.



3110 J. LusuINER and V. P. PANOSKALTSIS

4
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P 2 - N « 50
= N =25

N=15
___/ N~10
1_
O 1 1 1 ] L] ¥ 4 ]

log (CY)

Fig. 5. Discrcte moditied Kuhn model: creep function for various values of ¥ = 0.1, r = 1.25
{dotted line : continuous model).

Theorem

JuO =) as Now r-1+,r" - w,

It should be noted that the first two conditions, N — » and r = 1 4, arc not suflicient
for the third, r¥ — oo, as can be scen from the following counter-example: If r is given by
the sequence |+ I/N, then it is scen that r — 14 as N — o, while r¥ = (1 + I/N)Y = e,

Proof. The improper integral of expression (8) for the creep function is given by

L[ ndr d
[‘L'J (l—c"")‘f= lim j (t=e¢ ") ’E'
¢ T o e i

¢

By definition of the Riemann integral, the integral /is

N
=| H . - ‘
[=lim lim Y f(})Aq,

1
AT, 1~ 0 ma=d)

where f(t) déf(l —e "")/r, txstands for an arbitrary value inside the interval 7, < w2 < 1,41,
At, =1, ,—1,. and Nis the number of intervals. It is noted that 7, is equal to 1/C, i.c. it
is the lower limit of integration, and that H = r¥/C, hence H — o when r¥ — 0. If we now
further take 2 = 7,,, the above equation becomes

- e df 4 H = Crr
I('(l_c ) t ='|v|:]1 ﬁ!l_.n‘; mgo(l—c )(r—l) (30)

If the function In r is expanded in a Taylor series about r = 1, we obtain

Inr=0+(—D=kr—1)+0((r—1)"),
or

Inr=(r—0)+0(r—1%.
Then
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im Inr ¥ (1-") = lim [(r=D+0(r—1)7 ¥ (1-e ")

.Vizfxﬁl m=0 N:;..rx;l =0
N
= lim (r=1) Y (1-e 7).
™ oex m=0
Nox,r}

This relation, with the help of eqn (30). proves the theorem.
4.2. Properties of the discrete model

The loss tangent of the discrete modified Kuhn model can be derived with the help of
relation (27). By applying relation (24) to eqn (29). we obtain

{(1) = A5()+BClnr Z %e"c"'m H(1),
=

so that the complex compliance is

- N l
{(w)=A+BClInr Z ;"_g;{euc:m}

m=0
. 9 wr”
= BCI 2 3y —i 7 5 f e
A * ! rmz-:f) (C. +(I)'l"’m d C" +(u-r,m)

Conscquently, with f# = B/4 and ¢ = o/C as before, the loss tangent is given by

N (If'm
F S gt
tan d = C;(‘_) LA SN ——
{i(w) i d 1
wio -+ 1
Blor 2 1+q¢°r
Plots of the creep function and of the loss tangent, shown in Figs 5 and 6, respectively,
confirm the convergence to the continuous modified Kuhn model with increasing N in the

0.20
L

Loss Tangent

0.0

log q

Fig. 6. Discrete modified Kuhn model: frequency dependence of loss tangent for various values of
N B =0.1,r = 1.25 (dotted line: continuous model).

SAS 29:24-0
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range shown, the curves corresponding to NV = 100 are virtually indistinguishable from
those for the continuous model.

An tmportant feature of the discrete model is the fact that it is an internal-variable
model. For any stress history a(¢) such that a( — o) = 0, the strain &(¢) may be writen as

e(t) =J Jy(t—t)do(t))

=+ Z L (1),

m=0

where

(1) = Ao, 2,(1) = Bln rj (I —e "-2"Yda (1).

[t can easily be seen that cach x,,(¢) obeys the rate equation

corresponding to the Kelvin model. The discrete model can be extended into the nonlinear
range by replacing the right-hand side of the rate cquation with & nonlincar function of 7 ;
for example, the factor o can be replaced. in accordance with rate-process theory, by
D sinh (a/D), where D is a constant.
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