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Abstract-A model of linear viscoelasticity, applicable to the description of structural materials
whose creep is asymptotically logarithmic. is derived on the basis of some substantial modifications
ofa model introduced by Kuhn et ai. (1947, Heir. Chinr. Acta 30,307-328.464-486) to describe
rubber. From the proposed creep function, the rela~ation function is determined by Laplace
transform inversion. Energy dissipation is studied. and in particular the frequency dependence of
the loss tangent. which is found to be flat over a large number of cycles if the damping is small. in
al"Cordanl'C with observed behavior of structural materials and unlike the usual (Kelvin) model of
structural damping. An appro~imation to the modified model based on a discrete retardation-time
spectrum. called the discrete modified Kuhn model, is also studied; this is an internal-variable
model which can be e~tended to account for nonlinear behavior. In contrast to e~isting rheological
models, in the proposed model the number of parameters is fhed ilnd does not depend on the
number of rheological elements needed to simulate e~perimentill results.

I. INTRODUCTION

Beginning with the experiments by Phillips (1905). the crccp of numerous solids (including
rubber. glass. various metals and concrete) has been observcd to obey a logarithmic ercep
law over a wide range of times; that is. at a time 1 sufliciently long arter the ~tpplication of
strcss. the strain is given approximately by

/; cr.. In I.

For concrete in the linear range. for eX~tmple. the creep function

1(/) = A+Blog(1 +I/r}.

( I )

(2)

is ortcn used (U.S. Bureau of Reclamation. 1956) to describe creep over a time range of
months or years if r is a characteristic time of the order of one day. Obviously. elln (2)
reduces to the form (I) for 1 sumciently large.

Following Phillips. the creep of rubber was traditionally described by the creep function

and its time derivative

1(/) = A + B In 1

B
J(/} = -.

1

(3)

(4)

In order to remedy the singularity at 1 = O. Kuhn el al. (1947) proposed to replace the
expression (4) for the time derivative of the creep function with

. B -0
1(/)=···(I-e }.

1
(5)

which has the finite limit BC as 1 -- 0 and has the same behavior as (4) as 1 » I/e. Kuhn
el al. defined the creep function as the integral of (5) from 0 to I. with no constant of
integration. consistent with the fact that the instantaneous deformation of rubber. based

3099



3100 J. Lt:IlLl~ER and V. P. PA~OSI(AlTSIS

on "glassy" response [i.e. for temperatures below the glass-transition temperature Tg ; see
e.g. DiBenedetto (1967) or Van Vlack (1989)]. is negligible when compared with later
deformation (based on "rubbery" response. i.e. for temperatures above Tg). This creep
function can be expressed in terms of the exponential integral [see e.g. Greenberg (1978)]
as follows:

it I-e-C.<
J(t) = B dx= B[i'+ln(Ct)+Ei(Ct)].

o x
(6)

where Ei represents the exponential integral and y = 0.5772 ... is Euler's constant. It is seen
from this expression that J(O) = 0 and that the logarithmic feature of the observed creep
function (3) is preserved.

It is the purpose of the present paper to propose several modifications to the Kuhn
creep function (6) that will make it more readily applicable to solids such as concrete (in
which the instantaneous strain is not negligible beside the creep strain) and generalizable
to multiaxial stress states and to nonlinear behavior.

2. THE CONTINUOUS MODIFIED KUHN MODEL

2.1. Creep .fil1lctiol/
The tirst modification. at first glance minor but in f~lct significant in that it makes

possible the description of structural materials. is the inclusion of a nonzero constant of
integration in the expression for the creep function in order to account for instantaneous
elasticity. The creep function is therefore

J(t) = A+/J rI-e
c

< dx.
Jo x

(7)

where A is the instantaneous elastic compliance.
The second modilication involves a change of variable. namely Cx = tJr:. where r: is

the new dummy variable. in order to obtain a rheological representation of the model. The
creep function can then be written in the following retardation-time superposition form:

IL . dr:
J(t)=A+B (I-e- t

')--.

I/e r:
(8)

This creep function given by (7) or (8) will be said to represent the cOl/tinllolls modified
Kllhl/ model. since it is based on a continuous retardation-time spectrum. in order to
distinguish it from the discrete modified Kllhn model to be discussed in Section 4.

2.2. Relaxatiol/ jilllctiol/
The relaxation function G(t) corresponding to the creep function (8) may be determined

by me'lns of Lapl'lce transform methods. It is well known [see e.g. Christensen (1982) or
Flligge (1975)] that the Laplace transforms of the creep and relaxation functions. written

respectively as J(s) ~ 2) {J(t)} and G(s) ~ !t' {G(t)} (where s is the transform variable. in
general complex). arc related by

_?" I
J(s)v(s) =".

.\"
(9)

The relaxation function may therefore be found by inverting G(s) as given by (9). Using
the creep function in the form given by eqn (7). we have
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4 It (It 1- -c, )J(.I') = ~ +B--e---dr e-"dt.
S II II r

or

- .4 {It. } A 1(5)J(.I') = - + BY J (r) dr = --- +8'---.
5 II 5 S

where

I -Cr

J'( ) def -et = ---.
t

so that

where

.'I(t) = I -c Ct.

From the properties of the Laplace transform it follows that

/(.1') = f .(](II) Oil.

while

3101

( 10)

Therefore

l](.I') = I' (I-e el)e "'dll = I
II .I'

I

('+.1"

~ f' (I I) .I'+CJ (.1') = - . Ull = In
, II 11+( .I'

As a result of eqn (10). the Laplace transform of the creep function is

1(.1') = .~. [A + BIn (I + ~)J.
and by relation (9) the Laplace transform of the relaxation function is founu to be

(II )

It follows from the Laplace transform inversion theorem that the relaxation function G(t)
is given by the Bromwich integral:

I 1''''G(t) = !{' - 1 [('i(s)] = ..,---; G(s) c" ds.
_7t1 , '-r.'

where ~ denotes an abscissa located to the right of any singularity G(s) may have. Hence,
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Fig. I. Singularities or C(-,).

I f' "r. e"G(t) =., , ------------ dol'.

_Ttl ." .{A+Bln(l+ ~)J

Re

( 12)

The integrand must be examined in order to determine its singularities. and in particular
poles and branch cuts. The singularity at s = 0 is removable. On the other hand, the one
at .I' = S'h where A + Bin (I + C/.\'o) = o. is a pole. We may solve for So. obtaining

C
.1'0= --I~Ii'-e

( 13)

Finally. there is a logarithmic branch cut on the negative real axis from - C to 0, since for
.I' in the interval [- c. 0]. I + Cis < O. It is observed from eqn (13) that So < - C. Hence
the description in the complex plane is the one portrayed in Fig. I. With the aid of Cauchy's
integral theorem. the relaxation function G(f) given by eqn (12) becomes

( 14)

where Rcs (c" G(s). so) is thc residue of the function e" G(s) associated with the pole s = So.
and II and / 1 are the integrals above and below the branch cut. respectively. Using the
standard method in complex analysis [see e.g. Marsden and Hoffman (1987)], we found
the residue to be
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( 15)

In order to evaluate the integrals II and 1:- we note that above the branch cut s = r eilf,
where 0 < r < C. so that

while below the branch cut s = r e- m
• and hence

With the help of these expressions. we obtain

I I IC e- rt

-- (11 + I,) = - Im------c----:-:--c::-:- dr
:'7ti • 7t II r[A+8In(C/r-I)-i87t) .

where 1m denotes the imaginary part of a complex quantity. By performing the change of
variables x = riC. and upon noting that 0 < r < C implies 0 < x < I. we may transform
this integr~tl into

1 II e ICt

(II +1,) = IJ ,-- ,dx.
27ti . II xl[A+8In(l/x-I»)-+(81t)-:

Inserting this result. along with e4n (15). into (14). we obtain the relaxation function in a
form in which it may be evaluated by numerical integration. namely

While the integrand blows up at x = O. it can be shown that the integral is well behaved
there. For sul1iciently sm~tll x, the denominator is approximately 8 2x[ln(l/x>f. so that it
is sutficient to examine the behavior of the integral

fll dx rh dx

tJ x[ln(IT~»)i = Jo x(lnx)2

for some small h (h « I). By introducing the variable II = In x. this integral becomes

3. ENERGY DISSII'ATION

3.1. Thermoc~l'n(/mic considerations
Energy dissipation in a linearly viscoelastic material may be discussed on the basis of

the thermodynamics of materials with internal variables. In this section special attention
will be paid to the description of the dissipation by the proposed model. in particular its
relation with the frequency of excitation. By way of background it is recalled that if an
oscillatory strain of angular frequency w.
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E(t) = Do sin wI. (16)

is applied to a linear viscoelastic material specimen. the steady-state stress response (1 is
also oscillatory with the same angular frequency w. but out of phase with the strain. In
particular, the stress leads the strain by a phase angle <5(w) and is given by

(1(/) = (10 sin (wt+6(w». ( 17)

For simplicity, the explicit dependence of the angle <5 on OJ will henceforth be omitted. The
dissipated energy. as will be seen, is associated with the phase angle <5. If wt is eliminated
between eqns (16)-( 17). the following relation is obtained:

This equation describes an ellipse in the (1-f. plane.
The dissipated energy may be calculated by appealing to the first and second laws of

thermodynamics. The local form of this law is

pli = a: r.+pr-div h, ( 18)

[see e.g. Lubliner (1990)]. where /I is the internal energy density, p is the material density.
r is the rate of body heating or radiation per unit mass, and h is the heat-flux vector (so
that" = h' n is the heat outflow per unit time per unit surface with normal vector n). The
inner product of the stress with the strain rate tensor represents the mechanical power (also
called deformation power or stress power) per unit volume.

Let a cyclic proc('ss in a material clement be delined as a process in which the kinematic
and response functions delining the stale of the clement have the same values at the
beginning (time t I) and at the end of the process (time t ~). Upon integrating elln (18) from
t I to t~, it is seen that

f" f"a: Ii dt+ (pr-div h) dt = 0,
'I '1

since the intern~lI-energy density is a state function and therefore has the same value at
instants at which the state is the same. Since the steady-state excitation is a cyclic process,
it follows that the integral of the deformation power over a period (equal to the area inside
the stress-strain loop in the one-dimensional case) equals the amount of heat produced (or
the mechanical energy dissipated) during this time. It is clear from the 'Ibove derivation
that the area of the stress-strain loop represents the dissipated energy only in the case of a
steady-state deformation and for a period. It can be mentioned here that Tschoegl (1989)
arrives at the same result on the basis of the assumption that the kinetic energy can be
neglected for a viscoelastic material; this assumption is unnecessary, and is wrong in general.

The second law of thermodynamics may be expressed by the Kelvin inequality

(Lublincr, 1990), where D is the intrinsic dissipation (Lemaitre and Chaboche, 1990),

is the "thermodynamic force" conjugate to the intern.1I variable ~" and I/J is the Helmholtz
free-energy density per unit mass. It was shown by Lubliner (1972) that the additive
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decomposition of the strain tensor t into elastic (t C
) and inelastic parts (t') is compatible

with the existence of a free energy density "'(t,~, n if and only if the free energy can be
decomposed as follows:

(19)

Then the dissipation becomes

with the help of the standard relation (1 = po'"106 [see e.g. Lubliner (1990)].
If the part of the dissipation made up of the inelastic work rate (1: i' is integrated

through a cyclic process, we obtain

Because of the relation (19), the stress tensor is given by

lIenee the second integr.tl of the right-hand side equals the difference of the values of
"'. (which is a function of 1:. and 1') at the beginning and at the end of the cycle and is zero
for isothermal conditions [1:. attains the same values at the beginning and end of the cycle
for isothermal conditions, since (1 docs so .tnd 1:. = i·«(1, DJ. Since 1:«(1, T,~) and (1 attuin
the same values at the end of the cycle nnd becnuse specifically a steudy-state cycle is being
considered, it is reasonable to ussume th.tt in such a cycle the internal-variable vector ~ also
has the sume value at the end of the cycle. Hence the integral over a cycle of the second
purt of the dissipation D = - p r..(tJ"';liJ~.)e. equnls zero in an isothermal process, in view
ofeqn (19). Hence

f" f"Wd = Ddt = (1: i dr.
'I 'I

Consequently. we have arrived at the same result as before. Le. the dissipated energy
is given by the area of the stress-strain loop in a steady-state cycle. It is interesting to note
that the result based on the second law of thermodynamics is the same as the one based on
the first law, but with the additional assumption of isothermal processes.

Upon combining the above results with the relations (16) and (17) and integrating
over a period. we obtain the dissipated energy per unit volume in a cycle,

Wd =f0' dr. = f"/'u 0'0 sin (wt+b)r.ow cos wt dt,

and upon performing the integration,

(20)

Hence the tangent of the phase angle b, known as the loss tangent. is
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tan J =
TrlTol: o cos J .

The strain attains its maximum value £0 at t = T,A. and the corresponding value of the
stress is (1 = (10 cos J. If W, denotes the stored energy per unit volume of a linear elastic
material strained up to £0 with corresponding stress (J = (Jo cos J. then ~V, is

so that

w• J
tan () = "~17 .

_1t: r,
(21 )

3.2. Comparisofl Il'itl1 !\e!l'ifl model
The analysis presented above may be compared with that used frequently in structural

dynamics, Assume that a body or an element is subjected to a displacement-controlled
sinusoidal excitation given by L\ = L\o sin wt. The resulting steady-state force is

F = Fo sin (wt +(».

As a rule the Kelvin model is used in structural dynamics. though without heing explicitly
referred to: it is commonly known hy other names, such as "viscous model" or "standard
structural model", and it is sometimes thought. confusingly. that all linear damping models
arc Kelvin models. With the Kelvin model. the for<:e displa<:ement rel'ltion is F = KL\+ HIi.
where K and II arc the stiffness and vis<:ous coellicient, respectively, of the element under
consideration. By comparing the two expressions for the force, we have the result that
cos J = KL\olFo and sin () = I/wL\oIFo. IIence the loss tangent is

. Ilw
t 'lll () =, !\'

With the help of this expression. the force becomes

K
F= FL\+ -- tan ()Ii.

W

(22)

With the preceding expression for sin () and with eqn (20). the following expression is
obtained for the energy dissipated in u complete cycle by the clement under consideration:

(23)

If the element comprises a single-dcgree-of-freedom system with mass A! and natural
frequency Wo = J KI Nt, then the damping coellicient is ~ = HI H.", = H/2lI'!w o = HWo/2K;
hence the viscous cocllicient is H = 2MUJo~ = (2Klwo)~. Comparing this expression for the
one previously found for the viswus wellicient. 1/ = tun ()Klw. yields the result

ta n () W o
~ = ., w

so that at resonance (w = (lJo) the damping coefficient equals one-half of the loss tangent.
With the help of egn (21) it is also found that
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at resonance. From eqn (23) we observe that the dissipated energy as predicted by the
Kelvin model is quadratic in the displacement and linear in the frequency. while from eqn
(22) we note that the loss tangent is linear in the frequency. This predicted behavior is
contrary to that observed in most structural materials (Nashif el al.• 1985; Kelly. 1991).
in which the damping coefficient is essentially independent of frequency. This frequency
independence is usually modeled by hysteretic damping (Kelly. 1991 ; Nashif el al.• 1985).
which although convenient ·in frequency-domain analysis is intractable in time-domain
analysis. The latter is often preferable because nonlinearities can then be taken into account.

3.3. Frequency represenlation
A mathematically powerful way of presenting the loss tangent is by means of the

frequency representation which will be used here (Golden and Graham. 1988). Let (denote
the function

(24)

where 1I(t) is the Heaviside step function and 1)(1) is the Dirac delta function. The strain
may then be represented (Golden and Graham. 19R~) as

1:(1) =f t ((I - ()a«() dt'. (25)

where the lower limit may be replaced by II if/:(t) = 0 for I < II' Similarly. we may define

11(t) = G(O)I)(t) + (;(1)11(/).

so that

a(t) = f' t 11(1- t')1:(t') tIt'.

Let C(w) denote the Fourier transform of (t). i.e.

with similar definitions for li(w). ti(w) and /:(w). It can easily be shown that

C(w) = iwJ(iw). li(w) = iwC(iw).

(26)

where J and C denote the Laplace transforms as before. By taking the Fourier transforms
of eqns (25) and (26) we obtain

i(w) = (w)ri'(w). ri'(w) = Ji(w)/:(w),

so that

I
li(W) = : --- .

(,(w)

The complex functions li(w) and (w) arc respectively known as the complex modulus and
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Fig, 2. Continuous nllluilicu Kuhn model: creep funclion for v<lrious values of fl,

complex compliance. If ji(w) = Ji 1(w) +iji~(w). where JLI(W) and JL~(W) arc usually referred
to as the storage modulus and the loss modulus. respectively. then the loss tangent is

Similarly. if ((I) = (.(w) - i(~(w). then

(27)

For the continuous modified Kuhn model it follows from eqn (II) that

J
--

- C c~ 1 C
{(W)=A+Bln(I+:--)=A+Bln 1+-----,--iBtan- (---).

/w w- W

The loss tangent of the continuous modified Kuhn model is therefore

I
{J tan - I -

-~ q
tan u = (---)1/"

1+ PIn 1+ J2 -

(28)

where P= BIA and q = wlC. Plots of the creep function J(t). as given by eqn (7). against
the logarithm of time and of the loss tangent. given by eqn (28), against the logarithm of
q are shown in Figs 2 and 3. respectively. It is observed from the lalter plot that for small
values of p. the loss tangent is almost constant over a wide frequency range. which is a
characteristic of structural materials. and the values are similar to those observed in
structural materials. The Kelvin model notoriously fails to predict this type of behavior.
since its loss tangent varies linearly with the frequency.
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Fig. 3. Continuous modified Kuhn model: frequem;y dependence of loss tangent for various values
of II.

4. TilE DISCRETE MODIFIED KUIIN MODEL

4.1. Relation to contiflllOus model
Lel 1..,(t) denole the following lruncaled Dirichlel (or Prony) series:

N

IN(t) = II + B In r L (I-e ("''"').
",-(1

(29)

where r is a parameler subjecl lo r > I. This series represenls the ereep function of a
generalized Kelvin model. shown in Fig. 4. consisling of a spring with compliancc A in
series with N + I Kelvin elemenls. each of which has the same spring compliance Bin r. and
whose relardalion limes form a discrele speclrum wilh values tn/C. m =0•...• N. It will
be shown lhat IN(t) has ,IS a limit. under conditions thal will be specified. the creep function
J(t) of the continuous modified Kuhn model. Consequcntly the model described by 1.'1(t)
may be called the discrete modified Kuhn model. It is noteworthy that the only parameters
dcscribing the model are A. 1J. rand N. so that the number of paramcters is indcpcndcnt
of N.

Fig. 4. Discrete modified Kuhn model: representation as a generalized Kelvin model.



3110 J LL8Ll~ER and V. P P"~OSK.\LTSIS

4 "T"""'"-----------------------.

3

c(-
~

2

765432o·1

O+-----r-----.--........----r----.--........----r----.----l

-2

log (C t)

Fig. 5. Discrete modilk-d Kuhn model: creep function for various valucs of N; {I = 0.1. r = 1.25
(dollcd Iinc: continuous nllldel).

Theorem

1,,,(1) -+ J(t) as N -+ ,X!. r -+ I +.,v -+ 00.

It should be noted that the first two conditions. N -+ 'Y) and r -+ I +. arc not sullicicnt
for the third. r'v -+ 00. as can be seen from the following counter-example: If r is given by
the sequence I + IIN. then it is seen that r -+ I + as N -+X!. while r'" = (I + 1/N)'" -+ e.

Proof The improper integral of expression (X) for the creep function is given by

Jcf ff. ,dr. fl/
1= . (I-e "')-- = Itm . (I-e

I'C r 11 - I, I C

dr
Ilf) __~.

r

By definition of the Riemann integral. the integral 1 is

'"1 = lim lim L f(r,~)Llrm.
1/-.. L rl~~,~!iI~O ", ... 0

wheref( r) '!;[ (I - e -'t )/r. r:' stands for an arbitrary v:t1ue inside the interval r", ~ r,~ ~ r", .. I.

Llr", = r",+ I - r",. and N is the number of intervals. It is noted that r o is equal to I/C. i.e. it
is the lower limit of integration. and that fl = rNIC. hence II -+ 00 when r'v -+Xi. If we now
further take r:' = rIO" the above equation becomes

f'· .dr '"
(I-e I') = lim lim L (I-e (''''''')(r-I).

Ie t r v _ T, I~: r ", .. 0
(30)

If the function In r is expanded in a Taylor series about r = I. we obtain

In r = 0+ (r-I) - Hr-I)z +O«r-I)\).

or

Inr= (r-I)+O«r-I)~).

Then
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lim '"In r I (I-e-o,,,,) =
",-0

=

lim

lim
,,"V_ x

:V_~.r_1

.V

[(r-I)+O(r-I)::J L (I-e CU"')
",_0

N

(r-I) I (I-e- O
"').

",-0

3111

This relation. with the help of eqn (30). proves the theorem.

4.2. Properties oj the discrete model
The loss tangent of the discrete modified Kuhn model can be derived with the help of

relation (27). By applying relation (24) to eqn (29). we obtain

,v I
(t) = AJ(t) +BC In r L r'" e- o;", H(t).

",-0

so that the complex compliance is

, .v I
(w) = A + BC In r I :F{e-01r"'}

"'_ I) r'"

,v (C (Or"')=A +BC In r L -,-,...-,- -i--,-,--,- .
"'_0 c· +w'r·m c· +w·,-m

Consequcntly. with It = BIA and q = (lIIC us beforc. the loss t.tngcnt is given by

Plots of the creep function and of the loss tangent. shown in Figs 5 and 6, respectively.
confirm the convergence to thc continuous modified Kuhn model with incn:asing N; in the

~
0

Il)....
0

c
CD
CIII

fa 0....
t- o
~

~
0

0
0

-4 -3 '2 -1 0

Iogq

Fig. 6. Discrete modified Kuhn model: frequency dependence of loss tangent for various values of
N: II = 0.1. r = 1.25 (dolled line: continuous model).

SAS 29:24-0
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range shown. the curves corresponding to ,v ~ 100 are virtually indistinguishable from
those for the continuous model.

An important feature of the discrete model is the fact that it is an internal-variable
model. For any stress history a(t) such that a( - :x) = O. the strain E(t) may be writen as

E(t) = f J,(t-t')da(t')

s

= f;«t) + L 2",(1).
,,,= 0

where

It can easily be seen that each 2",(t) obeys the rate equation

corresponding to the Kelvin model. The discrete model can be extended into the nonlinear
range by replacing the right-hand side of the rate equation with a nonlinear function of (1;

for example. the factor (1 can be replaced. in accordance with rate-process theory. by
o sinh «(1/0). where 0 is a constant.
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